Parallel neoclassical closures for plasma fluid simulations.

- Need forms for parallel closures that include:
 - 1. rigorous treatment of linearized collision operator,
 - 2. interesting magnetic geometry,
 - 3. time dependence, and
- allow for an efficient numerical implementation in plasma fluid codes.

Close fluid equations with kinetically derived \vec{q} and Π .

Species evolution equations and closure moments for five moment model:

$$\frac{\partial n}{\partial t} + \vec{\nabla} \cdot n\vec{u} = 0 \quad \to \text{density}$$

$$mn\left(\frac{\partial}{\partial t} + \vec{u} \cdot \vec{\nabla}\right) \vec{u} = en(\vec{E} + \frac{1}{c}\vec{u} \times \vec{B}) - \vec{\nabla}p - \underline{\vec{\nabla}} \cdot \mathbf{\Pi} + \vec{R} \quad \to \text{flow}$$

$$\frac{3}{2}n\left(\frac{\partial}{\partial t} + \vec{u} \cdot \vec{\nabla}\right)T = -p\vec{\nabla} \cdot \vec{u} - \underline{\mathbf{\Pi}}: \underline{\vec{\nabla}}\underline{\vec{u}} - \underline{\vec{\nabla}} \cdot \underline{\vec{q}} + Q \quad \to \text{temperature}$$

$$\vec{q} \equiv \int d^3v' \frac{1}{2} m v'^2 \vec{v}' f, \qquad \qquad \mathbf{\Pi} \equiv \int d^3v' m [\vec{v}' \vec{v}' - \frac{v'^2}{3} \mathbf{I}] f.$$
heat flow stress tensor

Changing magnetic topology results in large q_{\parallel} .

Particles see T perturbations of scale length, L_T , which is comparable to the collision length, L_{ν} .

Particle trapping significantly reduces q_{\parallel} .

 $m{P}$ q_{\parallel} for homogeneous and inhomogeneous |B| shows effect of trapped particles as collisionality varies.

Previous q_{\parallel} derivation lacking.

Simple, "drift" kinetic equation:

$$\sigma \left[\vec{v}_{\parallel} \cdot \vec{\nabla}_L \left(F^0 + f^0 \right) \right] = \left[C(F^0 + f^0) \right].$$

Solve separately for Cordey eigenfunctions:

$$\frac{\partial}{\partial \xi} \frac{1 - \xi^2}{\xi} \langle \frac{v_{\parallel} B_0}{v B} \rangle \frac{\partial C_n}{\partial \xi} + \lambda_n \langle \frac{v \xi B}{v_{\parallel} B_0} \rangle C_n = 0.$$

\blacksquare Expand F^0 and solve system of ODEs:

$$\mathbf{I}\vec{F} + rac{v}{ar{
u}}\mathbf{A}rac{\partial \vec{F}}{\partial L} = -rac{v}{ar{
u}}\vec{G}rac{\partial f}{\partial L}.$$

lacksquare Write q_{\parallel} in integral form:

$$q_{\parallel} = \frac{n^{eq} v_{th}}{\pi^{3/2}} \int_0^{\infty} dL \left[T(-L) - T(+L) \right] K(L).$$

Numerical implementation for q_{\parallel} in NIMROD in place.

ullet Determine spectral content of T using periodogram and linearly fit to

$$T_0 + \sum_i (T_i^c \cos k_{\parallel i} L + T_i^s \sin k_{\parallel i} L).$$

Provide for more complete closure scheme.

Employ CEL approach writing:

$$f = f_M(n(\vec{x}, t), T(\vec{x}, t)) \left[1 + \frac{2}{v_{th}^2} \vec{v} \cdot \vec{u} \right] + F$$

lacktriangle Derive first-level recursive equation for gyrophase independent \bar{F} :

$$\begin{split} \left[\frac{\partial}{\partial t} + \vec{v}_{||} \cdot \vec{\nabla} + q \vec{v}_{||} \cdot \vec{E} \frac{\partial}{\partial \epsilon}\right] \vec{F} - C(f_M + \vec{F}) = \\ -\frac{m}{T} (v_{||}^2 - \frac{v_{\perp}^2}{2}) (\hat{\mathbf{b}} \hat{\mathbf{b}} - \frac{\mathbf{I}}{3}) : \vec{\nabla} \vec{u} f_M + \vec{v}_{||} \cdot \left(\vec{\nabla} \cdot \mathbf{\Pi} - \vec{R}\right) \frac{f_M}{p} \\ -L_1^{1/2} (\mathbf{\Pi} : \vec{\nabla} \vec{u} + \vec{\nabla} \cdot \vec{q} - \tilde{Q}) f_M + L_1^{3/2} \vec{v}_{||} \cdot \vec{\nabla} T \frac{f_M}{T}. \end{split}$$

Provide for more complete closure scheme.

Employ CEL approach writing:

$$f = f_M(n(\vec{x}, t), T(\vec{x}, t)) \left[1 + \frac{2}{v_{th}^2} \vec{v} \cdot \vec{u} \right] + F$$

● Can use T equation to eliminate \vec{q} and $\mathbf{\Pi}$: $\vec{\nabla} \vec{u}$ and ignore acceleration as first cut:

$$\left[\frac{\partial}{\partial t} + \vec{v}_{\parallel} \cdot \vec{\nabla}\right] \bar{F} - C(f_{M} + \bar{F}) =
-\frac{m}{T} (v_{\parallel}^{2} - \frac{v_{\perp}^{2}}{2}) (\hat{\mathbf{b}}\hat{\mathbf{b}} - \frac{\mathbf{I}}{3}) : \vec{\nabla}\vec{u}f_{M} + \vec{v}_{\parallel} \cdot (\vec{\nabla} \cdot \mathbf{\Pi} - \vec{R}) \frac{f_{M}}{p}
+ L_{1}^{1/2} \left[\vec{\nabla} \cdot \vec{u} + \frac{3}{2} \frac{\partial \ln T}{\partial t}\right] f_{M} + L_{1}^{3/2} \vec{v}_{\parallel} \cdot \vec{\nabla}T \frac{f_{M}}{T}.$$

Consider linearized C_{ss} .

- Keep full test particle (pitch-angle scattering, speed drag and diffusion) and field terms.
- Use limited expansion for $\bar{F} = \sum_{kl} M^{kl} v^l L_k^{l+1/2}(v) P_l(v_{\parallel}/v)$ to treat linearized collision operator introducing closures as collisional drives.
- Simple test problem to calculate collisional transport coefficients:

moments \rightarrow	2	3	4	Braginskii
coefficient ↓				
r_{\parallel}/p	0.65	0.65	0.67	0.71
$\chi_{\parallel i}/(v_{thi}^2\tau_i)$	4.60	2.36	2.76	2.76
$\chi_{\parallel e}/(v_{the}^2\tau_e)$	2.73	1.49	1.64	1.6

In general, invert $\frac{\partial}{\partial t} + \vec{v}_{||} \cdot \vec{\nabla}$ approximately.

Expand $F = \sum_{n=0}^{N} F_n P_n(v_{\parallel}/v)$ to form system of hyperbolic equations for $\vec{F} = (F_0, F_1, ..., F_N)$:

$$\mathbf{I}\frac{\partial \vec{F}}{\partial t} + (\mathbf{A}v\frac{\partial}{\partial L} + \mathbf{B}(\hat{\mathbf{b}} \cdot \vec{\nabla} \ln B))\vec{F} = \vec{g}(\nabla_{\parallel}T, \vec{\nabla}\vec{u}, \vec{q}, \mathbf{\Pi}, ...).$$

where $\mathbf{B}(\hat{\mathbf{b}}\cdot\vec{\nabla}\ln B)$ matrix arises from spatial dependence of $v_{\parallel}/v=\pm\sqrt{1-\mu B(\vec{x})/(mv^2/2)}.$

- Further work needed to:
 - 1. determine roles of passing and trapped distributions.
 - 2. approximately invert algebraic, PDE operator.
 - 3. treat time dependent characteristics which complicate numerical implementation.